Code No.: 16142 AS (D)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. VI-Semester Advanced Supplementary Examinations, July-2023 Additive Manufacturing and its Applications (OE-IV)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part- Λ (10× 2 = 20 Marks)

Q. No.	Stem of the question	M	I) P(
	Define the term prototype and give examples.	2		1	
2.	What are the benefits of RPT to consumer?	2	1	1	1
(3.)	Explain the principle of SLA process.	2	1	1	1
4.	Briefly explain the steps in the SGC process.		1	2	1
5.	What are the two methods of support removal used in FDM?	2	1	2	5
6.	Name various materials used in LOM process to make parts.	2	1	3	1
7.	Name the hardware components used in Sinter station Pro SLS system.	2	2	3	1
8.	What parameters effect the performance of 3DP process?	2	2	4	5
9.)	List some AM applications in Design.	2	1	4	5
0.		2	1	5	1
	List the applications of AM in medical and bio-engineering fields.	2	1	5	1
)	Part-B ($5 \times 8 = 40 \text{ Marks}$)				
(.) a)	Discuss the roles of prototypes in the product development process.	4	2	1	1
by	What are the phases of development from prototyping? Explain.	4	2	1	1
1	Compare the strengths of SLA and SGC processes.				
	Discuss the process of photo polymerization with sketches.	4	2	2	5
a) (Compare the applications of FDM and LOM processes.	4	3	2	1
	Explain the steps in the LOM process with a sketch.	4	2	3	5
1	Compare the weaknesses of SLS and 3DP processes.	4	3	3	5
b) H	low powder is converted into a solid object using a binder. Name and explain the process.	4	2	4	5

Code No.: 16142 AS (D)

A	Discuss the steps in the coin making process using AM technology.	4	2	5	5
	Discuss the steps in the community of Discuss how AM is used in (a) GIS (b) Jewelry making.	4	4	5	1
	Classify prototypes based on the various aspects of interests and explain the details.	4	2	1	1
b)	What are the main components of SLA system? Explain the SLA process using these components.	4	3	2	1
7	Answer any <i>two</i> of the following:				
a).	Discuss the strengths and weaknesses of FDM process.	4	3	3	5
	Discuss the sinter bonding process with reference to SLS system.	4	3	4	5
c)	Discuss the case study of "Design verification of an Airline Electrical Generator" by Sundstrand Aerospace.	4	4	5	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

	Tayonomy Level 1	20%
i)	Blooms Taxonomy Level - 1	40%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level - 3 & 4	4070
